
Microservices and DevOps

DevOps and Container Technology
Microservice Tests

Henrik Bærbak Christensen



Sources

• Note on the ‘infodeck’ [Clemson, 2014]

– https://martinfowler.com/articles/microservice-testing/

• Use arrows for navigation, not page down as you miss 

stuff!

CS@AU Henrik Bærbak Christensen 2

https://martinfowler.com/articles/microservice-testing/


The Classic Take on Testing

• Old-time ‘programs’ had three levels of testing:

CS@AU Henrik Bærbak Christensen 3

The Algorithms

The Collaboration

The User 
Expectation



Test Pyramid

• Unit tests

– Tests individual methods,

classes

• Service tests

– Tests service with

doubled collaborators

• End-to-End tests

– Functionality, user expectations

CS@AU Henrik Bærbak Christensen 4



Unit Tests

In detail the picture becomes a bit 

blurred…

CS@AU Henrik Bærbak Christensen 5



Unit Tests

• Testing the “algorithms”, the computation

– Methods, the classes as a unit…

• Fast!

• We all know what unit

tests are, right?

– I would say ‘no’…

CS@AU Henrik Bærbak Christensen 6



TDD and Unit Test

• Test-Driven Development

– Clean (production) code that works as a result of a systematic 

process driven by tests…

– Dogmatic: ”No production code is ever written expect when 

forced to do so because otherwise a test will fail!”

– Central principle: Fake it till you make it

– Need-driven development

– Outside-in development

• Design API before implementing it

CS@AU Henrik Bærbak Christensen 7



Example:

• When I started the SkyCave development I had this 

architecture in mind:

• Very first test case in my TDD: query player’s room

• Lead to ‘playerServant’ updating from storage:

CS@AU Henrik Bærbak Christensen 8

PlayerProxy

Player
Servant

<<i>>
CaveStorage



Example:

• As there was no CaveStorage, I faked-it, introducing a 

double

CS@AU Henrik Bærbak Christensen 9

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS



Example:

• So – what happened? What did I do???

– Unit testing of ‘player.getShortDescription()’ algorithm?

– Integration testing the player – storage collaboration?

• Bottom line

– Both ☺

– … thus blurring the

borderline!

CS@AU Henrik Bærbak Christensen 10



Fowler

• I am a classical TDD’er. I just use doubles a lot.
• A Mockist would code the CaveStorage mock to ensure a single ‘getPlayerByID()’ call 

was made. Tend to make tests very white-box and thus more fragile - IMO!

CS@AU Henrik Bærbak Christensen 11



Service Tests

In detail the picture becomes a bit 

blurred again ☺…

CS@AU Henrik Bærbak Christensen 12



Service Tests

• Akin to system tests at the service level

– Bypasses the user interface and

test services directly

– Tests an individual service’s

capabilities

– Need to stub out all external

collaborators so only the service itself is in scope

• Critique: Newman is imprecise in what ‘stubbing’ is

– “If you decide to … go over network to stubbed downstream 

collaborators”

CS@AU Henrik Bærbak Christensen 13



Fowler: Component Test

• Fowler instead calls them component tests

– limits the scope to a portion of the system under test (the 

microservice itself), manipulating through internal code 

interfaces, using test doubles to isolate.

• And explicitly talks about

– In-process and 

out-of-process approach 

for doubles

CS@AU Henrik Bærbak Christensen 14



Service Test Example

• Service test ‘daemon’ service’s quote retrieval feature

– In-process approach: inject ‘StubQuoteService’ into PlayerServ.

– Out-of-process approach: inject ‘RealQuoteService’ but make it 

call a (Mountebank) test double service

CS@AU Henrik Bærbak Christensen 15

Player
Servant

<<i>>
QuoteService

StubQS

Player
Servant

<<i>>
QuoteService

RealQS
QuoteServerQuote Service 

Double



Exercise:

• What are the benefits and liabilities of each approach?

– In-process approach: inject ‘StubQuoteService’ into PlayerServ.

– Out-of-process approach: inject ‘RealQuoteService’ but make it 

call a Mountebank test double service

CS@AU Henrik Bærbak Christensen 16

Player
Servant

<<i>>
QuoteService

StubQS

Player
Servant

<<i>>
QuoteService

RealQS

QuoteServer
Quote Service 

Double



Exercise:

• And the really tricky question:

• Is the test above a…

– Unit test of ‘getQuote()’?

– Service test of PlayerServant?

CS@AU Henrik Bærbak Christensen 17



End-to-End Tests

Perhaps not that blurred…



End-to-End Tests

• User value focus: functionality

• As much as possible of

system is under test

– Real database, etc.

CS@AU Henrik Bærbak Christensen 19



In the Pipeline

• Trigger End-to-End tests on every service release

– Ideally…

CS@AU Henrik Bærbak Christensen 20



Flaky, Brittle Tests

• Flaky Test: Tests that fail randomly due to non-

determinism in the environment (timing, race conditions, 

threading, …)

• Normalization of deviance: We get so used to failing tests 

occasionally that we start thinking that this is the norm!

– I.e. we get blind when failing is due to a real issue that needs 

fixing; and thus the issue persists!

• Similar: 

– Getting used to 236 compiler warnings => you miss important 

ones!

CS@AU Henrik Bærbak Christensen 21



Test Ownerships

• Who owns the end-to-end tests?

– Newman mentions several anti-patterns

– Free for all .

• Number explodes => End-to-End tests takes too long

– Dedicated team . 

• Gets isolated from development teams, becomes bottleneck

• Best balance

– Shared codebase, joint ownership

CS@AU Henrik Bærbak Christensen 22



Long Running Tests

• Slow running tests that are flaky are poison!

– Slow to run, slow to diagnose, painful and slow to remedy

– Pile-up: Lots of work (commits) pile up while failed E2E tests are 

diagnosed, corrected, rerun…

• Tests are difficult to remove due to human nature

– Who gets rewarded for removing a test?

• Especially, if that missing test would have caught a defect???

CS@AU Henrik Bærbak Christensen 23



Journeys, Not Stories

• Recommendation:

– Have a small test of test cases that tests journeys; not test cases 

for every user story/use case

– Very low level double digits for even complex systems

• 5-20 journey tests?

• Ordering a product, create customer, returning a product – and not 

much else!

CS@AU Henrik Bærbak Christensen 24



Consumer-Driven Tests

• CDT: Create tests that capture expectations of the 

consumer of the service

– Thus ‘helpdesk’ service runs

CDT’s on the Customer 

service

– Similar ‘web shop’ runs their

own CDT’s against the CS

– Note: Test double for the

loyalty point service

• CDT ownership?

– “It’s about conversations” – provide a ‘contract’ between services 

and thus teams. So – collaboration…

CS@AU Henrik Bærbak Christensen 25



Fowler: Contract Tests

• Fowler identifies the exact same need.

CS@AU Henrik Bærbak Christensen 26



What is the API Then?

• Which API does CDTs communicate by?

– The protocol level (typically REST)

• Which of course is a out-of-process test

– Slow and tedious, not part of the ‘gradle test’ cycle

CS@AU Henrik Bærbak Christensen 27

Player
Servant

<<i>>
QuoteService

RealQS

QuoteServer
Quote Service 

Double



Fowler Integration Tests

Missing in Newman…

Bærbak: Connector Tests



Integration Testing

• Focus is more on design

for failure…

CS@AU Henrik Bærbak Christensen 29



Integration Test

• IMO the integration tests embody testing the 

connector/driver that the consumer uses to interact with 

the service

– And the connectors dealing with failure modes

• Which of course is a out-of-process test

– Slow and tedious, not part of the ‘gradle test’ cycle

CS@AU Henrik Bærbak Christensen 30

Player
Servant

<<i>>
QuoteService

RealQS

QuoteServer
Quote Service 

Double



Connector Test

• In the Software Architecture lingo, the dynamic view of an 

executing system is called the component connector 

view

– Component: Executing process ‘doing stuff’

– Connector: The flow of control/data between components

• Fowlers integration tests are thus (in my mind) a test of 

the connector. Here the RealQuoteService impl.

• Connector Test is a better term IMO

CS@AU Henrik Bærbak Christensen 31

Player
Servant

<<i>>
QuoteService

RealQS

QuoteServer
Quote Service 

Double



Summary

CS@AU Henrik Bærbak Christensen 32

Service tests

Consumer Driven Tests

Test Journeys

No Newman 
Equivalent

Bærbak: 
Connector Test



In Practice

Relation to SkyCave



Rich Picture Architecture

CS@AU Henrik Bærbak Christensen 34

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServer



Service Test (in-process)

CS@AU Henrik Bærbak Christensen 35

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServer



Service Test (out-of-process)

CS@AU Henrik Bærbak Christensen 36

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServerQuote Service 

Double



Integration/Connector Test

CS@AU Henrik Bærbak Christensen 37

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServer



Contract Test / ConsumerDriven T.

CS@AU Henrik Bærbak Christensen 38

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServer



Test Journeys

CS@AU Henrik Bærbak Christensen 39

Daemon

PlayerProxy

Player
Servant

<<i>>
CaveStorage

FakeCS

RealCS
MongoDB

…
= Local call

= Network call

<<i>>
QuoteService

StubQS

RealQS
QuoteServer



Gradle and SkyCave

Handling Out-of-process Tests



Precursor to ContInt

• The ‘tip of the test pyramid’ tests are

slow and ‘expensive’ to run

• Conclusion: 

– Not part of normal development rhythm

• TDD Step 4: Run all tests and see them pass…

• Should be in the seconds timeframe

• Gradle ‘test’ target

– Runs all JUnit tests 

CS@AU Henrik Bærbak Christensen 41



The Solution

• In SkyCave I like to keep your solution code in a single 

Gradle project

– Not really the microservice doctrine, but makes it possible for me

to review your code!

• Subproject ‘integration’

– Task ‘itest’

• Put your ‘out-of-process’

tests here…

CS@AU Henrik Bærbak Christensen 42



Lots of Terms

• Find the ‘test type’ cheat sheet on Weekplan 4

– (Yes, I am not a graphical designer ☺)

CS@AU Henrik Bærbak Christensen 43



Summary

• Microservice architecture introduces a lot of new test 

types

– Because integration tests have a decision to make

• In-process integration – replace service with a local double

• out-of-process integration – replace service with remote double

– When out-of-process you also have two choices

• CDT/Contract test

– E.g. Call using raw connector, like POST, GET etc.

• Integration test

– E.g. Call using using ‘driver’ class, like ‘RealQuoteService’

• And you often need both

– CDT to facilitate suppliers development

– IntTest to test your own driver code base

CS@AU Henrik Bærbak Christensen 44


