/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Microservice Tests

Henrik Baerbak Christensen

eV Sources

AARHUS UNIVERSITET
* Note on the ‘infodeck’ [Clemson, 2014]

— https://martinfowler.com/articles/microservice-testing/

« Use arrows for navigation, not page down as you miss
stuff!

CS@AU Henrik Baerbak Christensen 2

https://martinfowler.com/articles/microservice-testing/

/v The Classic Take on Testing

AARHUS UNIVERSITET

« Old-time ‘programs’ had three levels of testing:

Definition: Unit test

Unit testing is the process of executing a software unit in isolation in
order to find defects in the unit itself.

Definition: Integration test

Integration testing is the process of executing a software unit in collabo-
ration with other units in order to find defects in their interactions.

Definition: System test

System testing is the process of executing the whole software system in
order to find deviations from the specified requirements.

CS@AU Henrik Baerbak Christensen

The Algorithms

The Collaboration

The User

Expectation

/v Test Pyramid

AARHUS UNIVERSITET

 Unit tests
— Tests individual methods,

classes p - $$$

 Service tests

— Tests service with
doubled collaborators

-
« End-to-End tests
— Functionality, user expectations

CS@AU Henrik Beerbak Christensen 4

/v

AARHUS UNIVERSITET

Unit Tests

In detail the picture becomes a bit
blurred...

CS@AU Henrik Beerbak Christensen

VeV Unit Tests

AARHUS UNIVERSITET

« Testing the “algorithms”, the computation
— Methods, the classes as a unit...

Individual unit
| |
Helpdesk b *ll .
~ » Loyalty
: points bank §
o I . Customer et
We all know what unit Webshop |—py LSO

tests are, right?
— | would say ‘no’...

CS@AU Henrik Baerbak Christensen 6

eV TDD and Unit Test

AARHUS UNIVERSITET

« Test-Driven Development

— Clean (production) code that works as a result of a systematic
process driven by tests...

— Dogmatic: "No production code is ever written expect when
forced to do so because otherwise a test will fail!”

— Central principle: Fake it till you make it

Thus it's no surprise that the mockists particularly talk about the effect of mockist

—_ N eed - d rlve N d eve | () p me nt testing on a design. In particular they advocate a style called need-driven
development. With this style you begin developing a user story by writing your first

— O utS I d e_ I n d eve | O p m e nt test for the outside of your system, making some interface object your SUT. By
thinking through the expectations upon the collaborators, you explore the
interaction between the SUT and its neighbors - effectively designing the outbound
interface of the SUT.

i_- Design API before implementing it]

CS@AU Henrik Baerbak Christensen 7

/v

AARHUS UNIVERSITET

Example:

 When | started the SkyCave development | had this

architecture in mind:

PlayerProxy

<<i>>
Vd CaveStorage

* Very first test case in my TDD: query player S room

1Henr1kB1erh1k

2015-07-28
2015-07-28

INTE AT

2015-07-28

2015-07-28
2015-07-28
2015-087-28
2015-07-28

(SR Y]
L g L)

:37 +0200
:37 +0“00

p| lic void shouldHafjeInitialLocation() {

:37 +0200 : description = player.getShortRoomDescription();

+0200 427) private vnid refrechFrimStnranaly I

+0200 428) P]1j€IR9[GId pr = qtor1qe.getP11jelByID{ID};
+0200 429) e :

+0200 430) groupName = pr.getGroupName();

Henrik Baerbak Christensen

- Example

AARHUS UNIVERSITET

(HenrikBaerbak
(HenrikBae
(HenrikBae
(HenrikBaerbak
(HenrikBaerbak
(HenrikBaerbak
(HenrikBaerbak
(HenrikBaerbak

public | shouldHafjeInitiallocation() {
description nlayer.getShortRoomDescription();
:37 +0200 427) private wnid refrechFriimStaranai} I
137 +0200 428) PlayerRecord pr = storage.getPlayerByID(ID);
137 +0200 429) ofi N :
:37 +0200 430)

L L L

:3
:3
:3
:3
p
‘o
p

12

W wwlwwww

L L L

« As there was no CaveStorage, | faked-it, introducing a
double

return ps;

}

Lt bt bbbt bl Lot bl bl Lo L Lt L)
L L)) W 0 W b WL W
(AR AR RN R A Y]

<<i>>
PlayerProxy CaveStorage

CS@AU Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Example:

« S0 — what happened? What did | do???

— Unit testing of ‘player.getShortDescription()’ algorithm?
— Integration testing the player — storage collaboration?

 Bottom line
— Both ©

— ... thus blurring the
borderline!

With unit testing, you see an important distinction based
on whether or not the unit under test is isolated from its
collaborators.

____. {7 Sociable unit testing focusses on testing the
" behaviour of modules by observing changes in
~ their state. This treats the unit under test as a
black box tested entirely through its interface.

- Solitary unit testing looks at the interactions
and collaborations between an object and its
- dependencies, which are replaced by test
doubles.

In essence classic xunit tests are not just unit tests, but also mini-integration tests.

CS@AU

Henrik Baerbak Christensen

10

eV Fowler

AARHUS UNIVERSITET
Classical and Mockist Testing

Now I'm at the point where I can explore the second dichotomy: that between
classical and mockist TDD. The big issue here is when to use a mock (or other
double).

The classical TDD style is to use real objects if possible and a double if it's awkward

to use the real thing. So a classical TDDer would use a real warehouse and a double

for the mail service. The kind of double doesn't really matter that much.

A mockist TDD practitioner, however, will always use a mock for any object with

interesting behavior. In this case for both the warehouse and the mail service.

| am a classical TDD’er. | just use doubles a lot.

» A Mockist would code the CaveStorage mock to ensure a single ‘getPlayerBylID()’ call
was made. Tend to make tests very white-box and thus more fragile - IMO!

CS@AU Henrik Baerbak Christensen 11

/v

AARHUS UNIVERSITET

Service Tests

In detail the picture becomes a bit
blurred again ©...

CS@AU Henrik Beerbak Christensen

12

eV Service Tests

AARHUS UNIVERSITET
. . Service
« AKin to system tests at the service level test scope
— Bypasses the user interface and . 4
test services directly Helpdesk f—» i
— Tests an individual service’s ey Customer -L-»i Stubloyalty
el 1 service | ! pomts bank
capabilities Webshop |—p S e
— Need to stub out all external b ek Stubbed colaborator

collaborators so only the service |tself IS In scope

« Critique: Newman is imprecise in what ‘stubbing’ is

— “If you decide to ... go over network to stubbed downstream
collaborators”

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

Fowler: Component Test

« Fowler instead calls them component tests

— limits the scope to a portion of the system under test (the
microservice itself), manipulating through internal code
Interfaces, using test doubles to isolate.

« And explicitly talks about

— In-process and
out-of-process approach
for doubles

CS@AU

T Vet . |n a microservice architecture, the
: 7 components are the services
L | themselves. By writing tests at this

granularity, the contract of the APl is
driven through tests from the perspective of a consumer.
Isolation of the service is achieved by replacing external
collaborators with test doubles and by using internal API
endpoints to probe or configure the service.

The implementation of such tests includes a number of
options. Should the test execute in the same process as the
service or out of process over the network? Should test
doubles lie inside the service or externally, reached over the
network? Should a real datastore be used or replaced with
an in-memory alternative? The following section discusses
this further.

Henrik Baerbak Christensen 14

/v Service Test Example

AARHUS UNIVERSITET

« Service test ‘daemon’ service’s quote retrieval feature
— In-process approach: inject ‘StubQuoteService’ into PlayerServ.

QuoteService

— Out-of-process approach: inject ‘RealQuoteService’ but make it
call a (Mountebank) test double service

<<i>>
QuoteService Quote Service

CS@AU Henrik Baerbak Christensen 15

eV Exercise:

AARHUS UNIVERSITET

« What are the benefits and liabilities of each approach?
— In-process approach: inject ‘StubQuoteService’ into PlayerServ.

StubQS

<<ji>>
Servant QuoteService

— Out-of-process approach: inject ‘RealQuoteService’ but make it
call a Mountebank test double service

<<i>> QuoteServer

Servant QuoteService QU ote Service
Double

CS@AU Henrik Baerbak Christensen 16

/v

AARHUS UNIVERSITET
« And the really tricky question:

c void shouldReturnCorrectlyFormattedQuotes() {
ng quote = player.getQuote(7);

assertThat (quote, is("The true sign of intelligence is not knowledge but imagination.

Exercise:

- Albert Einstein"));

* |s the test above a...
— Unit test of ‘getQuote()’?
— Service test of PlayerServant?

CS@AU Henrik Baerbak Christensen

17

/v

AARHUS UNIVERSITET

End-to-End Tests

Perhaps not that blurred...

eV End-to-End Tests

AARHUS UNIVERSITET
« User value focus: functionality

End-to-test scope

« As much as possible of eodesk B o)
. L o e P : a

system is under test | sevee points bank |

— Real database, etc. et) i

CS@AU Henrik Baerbak Christensen 19

/v

AARHUS UNIVERSITET

In the Pipeline

« Trigger End-to-End tests on every service release

— Ideally...

Web shop

(ustomer
service

Helpdesk

Loyalty
points bank

CS@AU

W

E L

Unit testq (Semce tests}

3 K O

-\

Unit tests) (Semce tests}

€5
Build 4
- 3 ' L

Unit tests }

Service tests}

-
ot |
SRS o “

Unit tests }

Service tests)

Henrik Baerbak Christensen

‘4
‘A End-to-end
ﬂ L FALET

20

eV Flaky, Brittle Tests

AARHUS UNIVERSITET

« Normalization of deviance: We get so used to failing tests
occasionally that we start thinking that this is the norm!

— l.e. we get blind when failing is due to a real issue that needs
fixing; and thus the issue persists!

e Similar:
— Getting used to 236 compiler warnings => you miss important
ones!

CS@AU Henrik Beerbak Christensen 21

/v Test Ownerships

AARHUS UNIVERSITET

 Who owns the end-to-end tests?
— Newman mentions several anti-patterns

— Free for all ®.
* Number explodes => End-to-End tests takes too long

— Dedicated team ®.
» Gets isolated from development teams, becomes bottleneck

« Best balance
— Shared codebase, joint ownership

/v Long Running Tests

AARHUS UNIVERSITET
« Slow running tests that are flaky are poison!

— Slow to run, slow to diagnose, painful and slow to remedy

— Pile-up: Lots of work (commits) pile up while failed E2E tests are
diagnosed, corrected, rerun...

 Tests are difficult to remove due to human nature

— Who gets rewarded for removing a test?
« Especially, if that missing test would have caught a defect???

/v Journeys, Not Stories

AARHUS UNIVERSITET

* Recommendation:

— Have a small test of test cases that tests journeys; not test cases
for every user story/use case

— Very low level double digits for even complex systems
« 5-20 journey tests?

» Ordering a product, create customer, returning a product — and not
much else!

eV Consumer-Driven Tests

AARHUS UNIVERSITET

— Thus ‘helpdesk’ service runs
CDT’s on the Customer

_ Helpdesk (DC
service test scope

— Similar ‘web shop’ runs their .
own CDT'’s against the CS Helpdesk £—]

— Note: Test double for the g Cts::trgmer , :-S;q;l;yslt.y-!
loyalty point service e t__, it il

« CDT ownership?

— “It's about conversations” — provide a ‘contract’ between services
and thus teams. So — collaboration...

Stubbed collaborator

CS@AU Henrik Beerbak Christensen 25

/v

AARHUS UNIVERSITET

Fowler: Contract Tests
 Fowler identifies the exact same need.

An integration contract test is a test at the boundary of an external service
verifying that it meets the contract expected by a consuming service. 9@

3 s Whenthe components involved are Frodicer
C g | microservices, the interface is the public API _
L % exposed by each service. The maintainers of L
each consuming service write an independent / e \
test suite that verifies only those aspects of the producing |
service that are in use.

/ | \

{"id" 5, {"id": 5, {"id": 5,
"namé: "James", ‘namé: "James" "name: "James",
age': 24)

[| [|

ge's 24) "ag"e'!Tz'A'}‘"“ . tage 24}
[] [I
[Consumer B | [Consumer C |
L]
L]

CS@AU Henrik Baerbak Christensen 26

eV What is the APl Then?

AARHUS UNIVERSITET

« Which API does CDTs communicate by?
— The protocol level (typically REST)

<<ji>>
QuoteService

RealQS

« Which of course is a out-of-process test
— Slow and tedious, not part of the ‘gradle test’ cycle

Double

I QuoteServer
(Quote Service

CS@AU Henrik Baerbak Christensen 27

/v

AARHUS UNIVERSITET

Fowler Integration Tests

Missing in Newman...
Baerbak: Connector Tests

/v Integration Testing

AARHUS UNIVERSITET

An integration test verifies the communication paths and interactions between

components to detect interface defects. 00 ©

Py i Integration tests collect modules
1 —— . together and test them as a subsystem
o ' in order to verify that they collaborate as
intended to achieve some larger piece of
behaviour. They exercise communication paths through
the subsystem to check for any incorrect assumptions each
module has about how to interact with its peers.

* Focus is more on design
for failure...

Gateway integration tests allow any protocol
level errors such as missing HTTP headers,
incorrect SSL handling or request/response body
mismatches to be flushed out at the finest testing
granularity possible.

Any special case error handling should also be
tested to ensure the service and protocol client
employed respond as expected in exceptional
circumstances.

At times it is difficult to trigger abnormal
behaviours such as timeouts or slow responses
from the external component. In this case it can
be beneficial to use a stub version of the external
component as a test harness which can be
configured to fail in predetermined ways.

CS@AU Henrik Baerbak Christensen

/v Integration Test

AARHUS UNIVERSITET

« IMO the integration tests embody testing the
connector/driver that the consumer uses to interact with
the service

— And the connectors dealing with failure modes

s JuoteServer
QuoteService C uote Service

RealQS Double

« Which of course is a out-of-process test
— Slow and tedious, not part of the ‘gradle test’ cycle

CS@AU Henrik Baerbak Christensen 30

VeV Connector Test

AARHUS UNIVERSITET

* In the Software Architecture lingo, the dynamic view of an
executing system is called the component connector

view
— Component: Executing process ‘doing stuff’
— Connector: The flow of control/data between components

* Fowlers integration tests are thus (in my mind) a test of
the connector. Here the RealQuoteService impl.

M IS a better term IMO

CS@AU Henrik Baerbak Christensen

<<i>> JuoteServer
QuoteService C uote Service

RealQS Doub|e

In summary...

Unit tests : exercise the
smallest pieces of testable
software in the application
to determine whether they
behave as expected.

No Newman

Equivalent

Integration tests : verify
the communication paths
and interactions between
components to detect
interface defects.

EJELE

Connector Test

CS@AU

o e O G e e e

5 TY K — T T

- o e o ol

ORI

Henrik Baerbak Christensen

-

| Component tests : limit the

L]

scope of the exercised
software to a portion of the
system under test,
manipulating the system
through internal code
interfaces and using test
doubles to isolate the code
under test from other
components.

—_—

Consumer Driven Tests

Contract tests : verify
interactions at the boundary
of an external service
asserting that it meets the
contract expected by a
consuming service.

Test Journeys

End-to-end tests : verify
that a system meets
external requirements and
achieves its goals, testing
the entire system, from end
to end.

32

/v

AARHUS UNIVERSITET

In Practice

Relation to SkyCave

/v

AARHUS UNIVERSITET

PlayerProxy

CS@AU

Player
Servant

Rich Picture Architecture

Daemon

FakeCS
<<i>>

CaveStorage

MongoDB

StubQS
<ji>>

QuoteService

QuoteServer

= |Local call

= = Network call

Henrik Baerbak Christensen 34

/v Service Test (iIn-process)

AARHUS UNIVERSITET

Daemon

FakeCS
Player c<ios

PlayerProxy CaveStorage
Servant |V|0ngODB

StubQS
<ji>>

QuoteService

QuoteServer

= |Local call

= = Network call

CS@AU Henrik Baerbak Christensen 35

/v

AARHUS UNIVERSITET

Service Test (out-of-process)

Daemon

Player e FakeCS

<<i>>
PlayerProxy CaveStorage
Servant |V|0ngODB

StubQS
<ji>>
QuoteService

Quote Service
Double

= |Local call

= = Network call

CS@AU Henrik Baerbak Christensen 36

/v Integration/Connector Test

AARHUS UNIVERSITET

Daemon

FakeCS r--------|

Player c<ios I

PlayerProxy CaveStorage
Servant |V|0ngODB I
L8 B N B B B B | -I

StubQS r--------|
<ji>>

QuoteService

|
QuoteServer [
|

CS@AU Henrik Baerbak Christensen

= Local call

= Network call

37

/v Contract Test / ConsumerDriven T.
AARHUS UNIVERSITET
Daemon

PIayer FakeCS

<<i>>

PlayerProxy CaveStorage
Servant |V|0ngODB

StubQS
<ji>>

QuoteService

= = Local call

= = Network call

CS@AU Henrik Baerbak Christensen 38

/v

AARHUS UNIVERSITET

Test Journeys

1
|
|
|
|
|

| N N B B B B B B]

I Daemon I

FakeCS I

| Player c<ios i
I PlayerProx CaveStorage

y y Servant g

| i

| i

] i

i

: StubQS I

<i>>

SR i

: SO QuoteServer 0

i

I------ [B B N B B B B B B

= |Local call

= = Network call

CS@AU Henrik Baerbak Christensen 39

/v

AARHUS UNIVERSITET

Gradle and SkyCave

Handling Out-of-process Tests

/v Precursor to Contint

AARHUS UNIVERSITET

* The ‘tip of the test pyramid’ tests are -
slow and ‘expensive’ to run

e Conclusion:
— Not part of normal development rhythm -t
« TDD Step 4: Run all tests and see them pass...
« Should be in the seconds timeframe
« Gradle ‘test’ target
— Runs all JUnit tests ®

CS@AU Henrik Baerbak Christensen 41

eV The Solution

AARHUS UNIVERSITET

* In SkyCave | like to keep your solution code in a single

Gradle project

— Not really the microservice doctrine, but makes it possible for me
to review your code!

csdev@ml:~/proj/cave$ gradle itest

. Subproject ‘integration’ > Task :common:compileJava UP-TO-DATE

™y

— Task ‘itest’

cloud.cave.TestRealQuoteService > shouldTestQuoteIdAPI PASSED
cloud.cave.TestRealQuote e > shouldTestIOnvalidQuoteIdAPI PASSED
1)
° PUt your OUt'Of'prOceSS cloud.cave.TestRealQuoteService > shouldTestQuoteHeaderAPI PASSED

teStS here. .] 24 successes, 0 failures, 1 skipped) |

CS@AU Henrik Baerbak Christensen 42

eV Lots of Terms

AARHUS UNIVERSITET

« Find the ‘test type’ cheat sheet on Weekplan 4
— (Yes, | am not a graphical designer ©)

Microservice Test Types.

CS@AU Henrik Beerbak Christensen 43

Y Summary

AARHUS UNIVERSITET
 Microservice architecture introduces a lot of new test
types

— Because integration tests have a decision to make
* In-process integration — replace service with a local double
 out-of-process integration — replace service with remote double

— When out-of-process you also have two choices
« CDT/Contract test
— E.g. Call using raw connector, like POST, GET etc.
* Integration test
— E.g. Call using using ‘driver’ class, like ‘RealQuoteService’

« And you often need both
— CDT to facilitate suppliers development
— IntTest to test your own driver code base

